Struct nalgebra::geometry::Point[][src]

#[repr(C)]pub struct Point<N: Scalar, D: DimName> where
    DefaultAllocator: Allocator<N, D>, 
{ pub coords: VectorN<N, D>, }

A point in a n-dimensional euclidean space.

Fields

coords: VectorN<N, D>

The coordinates of this point, i.e., the shift from the origin.

Implementations

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn to_homogeneous(&self) -> VectorN<N, DimNameSum<D, U1>> where
    N: One,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>>, 
[src]

Converts this point into a vector in homogeneous coordinates, i.e., appends a 1 at the end of it.

This is the same as .into().

Example

let p = Point2::new(10.0, 20.0);
assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));

pub fn from_coordinates(coords: VectorN<N, D>) -> Self[src]

👎 Deprecated:

Use Point::from(vector) instead.

Creates a new point with the given coordinates.

pub fn len(&self) -> usize[src]

The dimension of this point.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.len(), 2);

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.len(), 3);

pub fn stride(&self) -> usize[src]

👎 Deprecated:

This methods is no longer significant and will always return 1.

The stride of this point. This is the number of buffer element separating each component of this point.

pub fn iter(
    &self
) -> MatrixIter<'_, N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>

Notable traits for MatrixIter<'a, N, R, C, S>

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for MatrixIter<'a, N, R, C, S> type Item = &'a N;
[src]

Iterates through this point coordinates.

Example

let p = Point3::new(1.0, 2.0, 3.0);
let mut it = p.iter().cloned();

assert_eq!(it.next(), Some(1.0));
assert_eq!(it.next(), Some(2.0));
assert_eq!(it.next(), Some(3.0));
assert_eq!(it.next(), None);

pub unsafe fn get_unchecked(&self, i: usize) -> &N[src]

Gets a reference to i-th element of this point without bound-checking.

pub fn iter_mut(
    &mut self
) -> MatrixIterMut<'_, N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>

Notable traits for MatrixIterMut<'a, N, R, C, S>

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for MatrixIterMut<'a, N, R, C, S> type Item = &'a mut N;
[src]

Mutably iterates through this point coordinates.

Example

let mut p = Point3::new(1.0, 2.0, 3.0);

for e in p.iter_mut() {
    *e *= 10.0;
}

assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut N[src]

Gets a mutable reference to i-th element of this point without bound-checking.

pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)[src]

Swaps two entries without bound-checking.

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub unsafe fn new_uninitialized() -> Self[src]

Creates a new point with uninitialized coordinates.

pub fn origin() -> Self where
    N: Zero
[src]

Creates a new point with all coordinates equal to zero.

Example

// This works in any dimension.
// The explicit crate::<f32> type annotation may not always be needed,
// depending on the context of type inference.
let pt = Point2::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0);

let pt = Point3::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);

pub fn from_slice(components: &[N]) -> Self[src]

Creates a new point from a slice.

Example

let data = [ 1.0, 2.0, 3.0 ];

let pt = Point2::from_slice(&data[..2]);
assert_eq!(pt, Point2::new(1.0, 2.0));

let pt = Point3::from_slice(&data);
assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));

pub fn from_homogeneous(v: VectorN<N, DimNameSum<D, U1>>) -> Option<Self> where
    N: Scalar + Zero + One + ClosedDiv,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>>, 
[src]

Creates a new point from its homogeneous vector representation.

In practice, this builds a D-dimensional points with the same first D component as v divided by the last component of v. Returns None if this divisor is zero.

Example


let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));

// All component of the result will be divided by the
// last component of the vector, here 2.0.
let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));

// Fails because the last component is zero.
let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
let pt = Point3::from_homogeneous(coords);
assert!(pt.is_none());

// Works also in other dimensions.
let coords = Vector3::new(1.0, 2.0, 1.0);
let pt = Point2::from_homogeneous(coords);
assert_eq!(pt, Some(Point2::new(1.0, 2.0)));

impl<N: Scalar> Point<N, U1> where
    DefaultAllocator: Allocator<N, U1>, 
[src]

pub fn new(x: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point1::new(1.0);
assert!(p.x == 1.0);

impl<N: Scalar> Point<N, U2> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

pub fn new(x: N, y: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point2::new(1.0, 2.0);
assert!(p.x == 1.0 && p.y == 2.0);

impl<N: Scalar> Point<N, U3> where
    DefaultAllocator: Allocator<N, U3>, 
[src]

pub fn new(x: N, y: N, z: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point3::new(1.0, 2.0, 3.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);

impl<N: Scalar> Point<N, U4> where
    DefaultAllocator: Allocator<N, U4>, 
[src]

pub fn new(x: N, y: N, z: N, w: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point4::new(1.0, 2.0, 3.0, 4.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);

impl<N: Scalar> Point<N, U5> where
    DefaultAllocator: Allocator<N, U5>, 
[src]

pub fn new(x: N, y: N, z: N, w: N, a: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);

impl<N: Scalar> Point<N, U6> where
    DefaultAllocator: Allocator<N, U6>, 
[src]

pub fn new(x: N, y: N, z: N, w: N, a: N, b: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    D::Value: Cmp<U0, Output = Greater>, 
[src]

pub fn xx(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn xxx(&self) -> Point3<N>[src]

Builds a new point from components of self.

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    D::Value: Cmp<U1, Output = Greater>, 
[src]

pub fn xy(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn yx(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn yy(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn xxy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xyx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xyy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yxx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yxy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yyx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yyy(&self) -> Point3<N>[src]

Builds a new point from components of self.

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    D::Value: Cmp<U2, Output = Greater>, 
[src]

pub fn xz(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn yz(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn zx(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn zy(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn zz(&self) -> Point2<N>[src]

Builds a new point from components of self.

pub fn xxz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xyz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xzx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xzy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn xzz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yxz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yyz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yzx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yzy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn yzz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zxx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zxy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zxz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zyx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zyy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zyz(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zzx(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zzy(&self) -> Point3<N>[src]

Builds a new point from components of self.

pub fn zzz(&self) -> Point3<N>[src]

Builds a new point from components of self.

Trait Implementations

impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

type Epsilon = N::Epsilon

Used for specifying relative comparisons.

impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'b, N, D1: DimName, D2: Dim, SB> AddAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1: DimName, D2: Dim, SB> AddAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N: Scalar + Field, D: DimName> AffineSpace for Point<N, D> where
    N: Scalar + Field,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Translation = VectorN<N, D>

The associated vector space.

impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

type Rotation = Self

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Id

The type of the pure translation part of this affine transformation.

impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Rotation = Id

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Self

The type of the pure translation part of this affine transformation.

impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Rotation = R

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type NonUniformScaling = N

Type of the non-uniform scaling to be applied.

type Rotation = R

Type of the first rotation to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N: RealField> AffineTransformation<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

type Rotation = Self

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Id

The type of the pure translation part of this affine transformation.

impl<N: RealField> AffineTransformation<Point<N, U3>> for UnitQuaternion<N>[src]

type Rotation = Self

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Id

The type of the pure translation part of this affine transformation.

impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Clone + Scalar, D: Clone + DimName> Clone for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar, D: DimName> Copy for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Copy
[src]

impl<N: Debug + Scalar, D: Debug + DimName> Debug for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar> Deref for Point<N, U1> where
    DefaultAllocator: Allocator<N, U1>, 
[src]

type Target = X<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U2> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

type Target = XY<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U3> where
    DefaultAllocator: Allocator<N, U3>, 
[src]

type Target = XYZ<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U4> where
    DefaultAllocator: Allocator<N, U4>, 
[src]

type Target = XYZW<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U5> where
    DefaultAllocator: Allocator<N, U5>, 
[src]

type Target = XYZWA<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U6> where
    DefaultAllocator: Allocator<N, U6>, 
[src]

type Target = XYZWAB<N>

The resulting type after dereferencing.

impl<N: Scalar> DerefMut for Point<N, U1> where
    DefaultAllocator: Allocator<N, U1>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U2> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U3> where
    DefaultAllocator: Allocator<N, U3>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U4> where
    DefaultAllocator: Allocator<N, U4>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U5> where
    DefaultAllocator: Allocator<N, U5>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U6> where
    DefaultAllocator: Allocator<N, U6>, 
[src]

impl<N: RealField, D: DimName> DirectIsometry<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> DirectIsometry<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField> DirectIsometry<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> DirectIsometry<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N: Scalar + Display, D: DimName> Display for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + ClosedDiv, D: DimName> Div<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<'a, N: Scalar + ClosedDiv, D: DimName> Div<N> for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<N: Scalar + ClosedDiv, D: DimName> DivAssign<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> EuclideanSpace for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Coordinates = VectorN<N, D>

The underlying finite vector space.

type RealField = N

The underlying reals.

impl<N: Scalar> From<[N; 1]> for Point<N, U1>[src]

impl<N: Scalar> From<[N; 2]> for Point<N, U2>[src]

impl<N: Scalar> From<[N; 3]> for Point<N, U3>[src]

impl<N: Scalar> From<[N; 4]> for Point<N, U4>[src]

impl<N: Scalar> From<[N; 5]> for Point<N, U5>[src]

impl<N: Scalar> From<[N; 6]> for Point<N, U6>[src]

impl<N: Scalar, D: DimName> From<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + Zero + One, D: DimName> From<Point<N, D>> for VectorN<N, DimNameSum<D, U1>> where
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>, 
[src]

impl<N: Scalar + Hash, D: DimName + Hash> Hash for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Hash
[src]

impl<N: Scalar, D: DimName> Index<usize> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = N

The returned type after indexing.

impl<N: Scalar, D: DimName> IndexMut<usize> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> Isometry<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> Isometry<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField> Isometry<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> Isometry<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N, D: DimName> JoinSemilattice for Point<N, D> where
    N: Scalar + JoinSemilattice,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N, D: DimName> Lattice for Point<N, D> where
    N: Scalar + Lattice,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N, D: DimName> MeetSemilattice for Point<N, D> where
    N: Scalar + MeetSemilattice,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, 'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'b, N: RealField> Mul<&'b Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField> Mul<&'b Point<N, U2>> for &'a UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField> Mul<&'b Point<N, U3>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<'b, N: RealField> Mul<&'b Point<N, U3>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<N: Scalar + ClosedMul, D: DimName> Mul<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: Scalar + ClosedMul, D: DimName> Mul<N> for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimName> Mul<Point<N, D>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimName> Mul<Point<N, D>> for Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<N: RealField> Mul<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<Point<N, U2>> for &'a UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<Point<N, U3>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<N: RealField> Mul<Point<N, U3>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<N: Scalar + ClosedMul, D: DimName> MulAssign<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + ClosedNeg, D: DimName> Neg for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<'a, N: Scalar + ClosedNeg, D: DimName> Neg for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the - operator.

impl<N: RealField, D: DimName> OrthogonalTransformation<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField> OrthogonalTransformation<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> OrthogonalTransformation<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N: Scalar, D: DimName> PartialEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + PartialOrd, D: DimName> PartialOrd<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C> where
    N: RealField,
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField> ProjectiveTransformation<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> ProjectiveTransformation<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N: Scalar + RelativeEq, D: DimName> RelativeEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

impl<N: RealField, D: DimName> Rotation<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

Subgroups of the n-dimensional rotation group SO(n).

impl<N: RealField> Rotation<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> Rotation<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Similarity<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Scaling = N

The type of the pure (uniform) scaling part of this similarity transformation.

impl<N: RealField> Similarity<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

impl<N: RealField> Similarity<Point<N, U3>> for UnitQuaternion<N>[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'a, 'b, N, D: DimName> Sub<&'b Point<N, D>> for &'a Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'b, N, D: DimName> Sub<&'b Point<N, D>> for Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'a, N, D: DimName> Sub<Point<N, D>> for &'a Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<N, D: DimName> Sub<Point<N, D>> for Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'b, N, D1: DimName, D2: Dim, SB> SubAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1: DimName, D2: Dim, SB> SubAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, U1>>::Buffer>> for Point<N1, D> where
    D: DimNameAdd<U1>,
    N1: Scalar,
    N2: Scalar + Zero + One + ClosedDiv + SupersetOf<N1>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>> + Allocator<N2, D>, 
[src]

impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D> where
    D: DimName,
    N1: Scalar,
    N2: Scalar + SupersetOf<N1>,
    DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>, 
[src]

impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, <D as DimNameSub<U1>>::Output>> for MatrixN<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>, 
[src]

impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Similarity<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C> where
    N: RealField,
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>, 
[src]

impl<N: RealField> Transformation<Point<N, U2>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: RealField> Transformation<Point<N, U3>> for UnitQuaternion<N>[src]

impl<N: RealField, D: DimName> Translation<Point<N, D>> for Translation<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

Subgroups of the n-dimensional translation group T(n).

impl<N: Scalar + UlpsEq, D: DimName> UlpsEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

Auto Trait Implementations

impl<N, D> !RefUnwindSafe for Point<N, D>

impl<N, D> !Send for Point<N, D>

impl<N, D> !Sync for Point<N, D>

impl<N, D> !Unpin for Point<N, D>

impl<N, D> !UnwindSafe for Point<N, D>

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T, Right> ClosedAdd<Right> for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<T, Right> ClosedSub<Right> for T where
    T: Sub<Right, Output = T> + SubAssign<Right>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.