Struct nalgebra::geometry::Isometry [−][src]
A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
Fields
rotation: R
The pure rotational part of this isometry.
translation: Translation<N, D>
The pure translational part of this isometry.
Implementations
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Self
[src]
Creates a new isometry from its rotational and translational parts.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI); let iso = Isometry3::from_parts(tra, rot); assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
pub fn inverse(&self) -> Self
[src]
Inverts self
.
Example
let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let inv = iso.inverse(); let pt = Point2::new(1.0, 2.0); assert_eq!(inv * (iso * pt), pt);
pub fn inverse_mut(&mut self)
[src]
Inverts self
in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let pt = Point2::new(1.0, 2.0); let transformed_pt = iso * pt; iso.inverse_mut(); assert_eq!(iso * transformed_pt, pt);
pub fn append_translation_mut(&mut self, t: &Translation<N, D>)
[src]
Appends to self
the given translation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let tra = Translation2::new(3.0, 4.0); // Same as `iso = tra * iso`. iso.append_translation_mut(&tra); assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
pub fn append_rotation_mut(&mut self, r: &R)
[src]
Appends to self
the given rotation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0); let rot = UnitComplex::new(f32::consts::PI / 2.0); // Same as `iso = rot * iso`. iso.append_rotation_mut(&rot); assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)
[src]
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let pt = Point2::new(1.0, 0.0); iso.append_rotation_wrt_point_mut(&rot, &pt); assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
[src]
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let rot = UnitComplex::new(f32::consts::FRAC_PI_2); iso.append_rotation_wrt_center_mut(&rot); // The translation part should not have changed. assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0)); assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by this isometry.
This is the same as the multiplication self * pt
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by this isometry, ignoring the translation component of the isometry.
This is the same as the multiplication self * v
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
impl<N: RealField, D: DimName, R> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this isometry into its equivalent homogeneous transformation matrix.
Example
let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 10.0, 0.5, 0.8660254, 20.0, 0.0, 0.0, 1.0); assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn identity() -> Self
[src]
Creates a new identity isometry.
Example
let iso = Isometry2::identity(); let pt = Point2::new(1.0, 2.0); assert_eq!(iso * pt, pt); let iso = Isometry3::identity(); let pt = Point3::new(1.0, 2.0, 3.0); assert_eq!(iso * pt, pt);
pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self
[src]
The isometry that applies the rotation r
with its axis passing through the point p
.
This effectively lets p
invariant.
Example
let rot = UnitComplex::new(f32::consts::PI); let pt = Point2::new(1.0, 0.0); let iso = Isometry2::rotation_wrt_point(rot, pt); assert_eq!(iso * pt, pt); // The rotation center is not affected. assert_relative_eq!(iso * Point2::new(1.0, 2.0), Point2::new(1.0, -2.0), epsilon = 1.0e-6);
impl<N: RealField> Isometry<N, U2, Rotation2<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N) -> Self
[src]
Creates a new 2D isometry from a translation and a rotation angle.
Its rotational part is represented as a 2x2 rotation matrix.
Example
let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));
pub fn translation(x: N, y: N) -> Self
[src]
Creates a new isometry from the given translation coordinates.
pub fn rotation(angle: N) -> Self
[src]
Creates a new isometry from the given rotation angle.
impl<N: RealField> Isometry<N, U2, UnitComplex<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N) -> Self
[src]
Creates a new 2D isometry from a translation and a rotation angle.
Its rotational part is represented as an unit complex number.
Example
let iso = IsometryMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));
pub fn translation(x: N, y: N) -> Self
[src]
Creates a new isometry from the given translation coordinates.
pub fn rotation(angle: N) -> Self
[src]
Creates a new isometry from the given rotation angle.
impl<N: RealField> Isometry<N, U3, Rotation3<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from a translation and a rotation axis-angle.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::new(translation, axisangle); assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::new(translation, axisangle); assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
pub fn translation(x: N, y: N, z: N) -> Self
[src]
Creates a new isometry from the given translation coordinates.
pub fn rotation(axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from the given rotation angle.
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the z
axis to the view direction target - eye
and the origin to the eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::face_towards(&eye, &target, &up); assert_eq!(iso * Point3::origin(), eye); assert_relative_eq!(iso * Vector3::z(), Vector3::x()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::face_towards(&eye, &target, &up); assert_eq!(iso * Point3::origin(), eye); assert_relative_eq!(iso * Vector3::z(), Vector3::x());
pub fn new_observer_frame(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
renamed to face_towards
Deprecated: Use Isometry::face_towards instead.
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a right-handed look-at view matrix.
It maps the view direction target - eye
to the negative z
axis to and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local -z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::look_at_rh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), -Vector3::z()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a left-handed look-at view matrix.
It maps the view direction target - eye
to the positive z
axis and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::look_at_lh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), Vector3::z()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), Vector3::z());
impl<N: RealField> Isometry<N, U3, UnitQuaternion<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from a translation and a rotation axis-angle.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::new(translation, axisangle); assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::new(translation, axisangle); assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6); assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
pub fn translation(x: N, y: N, z: N) -> Self
[src]
Creates a new isometry from the given translation coordinates.
pub fn rotation(axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from the given rotation angle.
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the z
axis to the view direction target - eye
and the origin to the eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::face_towards(&eye, &target, &up); assert_eq!(iso * Point3::origin(), eye); assert_relative_eq!(iso * Vector3::z(), Vector3::x()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::face_towards(&eye, &target, &up); assert_eq!(iso * Point3::origin(), eye); assert_relative_eq!(iso * Vector3::z(), Vector3::x());
pub fn new_observer_frame(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
renamed to face_towards
Deprecated: Use Isometry::face_towards instead.
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a right-handed look-at view matrix.
It maps the view direction target - eye
to the negative z
axis to and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local -z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::look_at_rh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), -Vector3::z()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), -Vector3::z());
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a left-handed look-at view matrix.
It maps the view direction target - eye
to the positive z
axis and the eye
to the origin.
This conforms to the common notion of right handed camera look-at view matrix from
the computer graphics community, i.e. the camera is assumed to look toward its local z
axis.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Isometry with its rotation part represented as a UnitQuaternion let iso = Isometry3::look_at_lh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), Vector3::z()); // Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up); assert_eq!(iso * eye, Point3::origin()); assert_relative_eq!(iso * Vector3::x(), Vector3::z());
Trait Implementations
impl<N: RealField, D: DimName, R> AbsDiffEq<Isometry<N, D, R>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
pub fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<N: RealField, D: DimName, R> AbstractGroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractLoop<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractMonoid<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractQuasigroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractSemigroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Rotation = R
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Self::Translation, R, Id, R)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn clone(&self) -> Self
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
impl<N: Debug + RealField, D: Debug + DimName, R: Debug> Debug for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField + Display, D: DimName, R> Display for Isometry<N, D, R> where
R: Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
[src]
R: Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b R)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: R)
[src]
impl<N: RealField, D: DimName, R> Eq for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
impl<N: RealField + Hash, D: DimName + Hash, R: Hash> Hash for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Unit<VectorN<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Unit<VectorN<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Unit<VectorN<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Unit<VectorN<N, D>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Mul<Isometry<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Isometry<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<N: RealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Unit<VectorN<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Unit<VectorN<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Unit<VectorN<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Unit<VectorN<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b R)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: R)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn one() -> Self
[src]
Creates a new identity isometry.
pub fn set_one(&mut self)
[src]
pub fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
impl<N: RealField, D: DimName, R> PartialEq<Isometry<N, D, R>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> RelativeEq<Isometry<N, D, R>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
pub fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
fn rotation(&self) -> R
[src]
fn scaling(&self) -> Id
[src]
pub fn translate_point(&self, pt: &E) -> E
[src]
pub fn rotate_point(&self, pt: &E) -> E
[src]
pub fn scale_point(&self, pt: &E) -> E
[src]
pub fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn inverse_translate_point(&self, pt: &E) -> E
[src]
pub fn inverse_rotate_point(&self, pt: &E) -> E
[src]
pub fn inverse_scale_point(&self, pt: &E) -> E
[src]
pub fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R>
[src]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R>
[src]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R2>
[src]
fn is_in_subset(iso: &Isometry<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Isometry<N2, U2, R>
[src]
fn is_in_subset(iso: &Isometry<N2, U2, R>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Isometry<N2, U3, R>
[src]
fn is_in_subset(iso: &Isometry<N2, U3, R>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U3, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, R> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Isometry<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>
[src]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn two_sided_inverse(&self) -> Self
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl<N: RealField, D: DimName, R> UlpsEq<Isometry<N, D, R>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
Auto Trait Implementations
impl<N, D, R> !RefUnwindSafe for Isometry<N, D, R>
impl<N, D, R> !Send for Isometry<N, D, R>
impl<N, D, R> !Sync for Isometry<N, D, R>
impl<N, D, R> !Unpin for Isometry<N, D, R>
impl<N, D, R> !UnwindSafe for Isometry<N, D, R>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> MultiplicativeGroup for T where
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
[src]
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
impl<T> MultiplicativeLoop for T where
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
[src]
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
impl<T> MultiplicativeMagma for T where
T: AbstractMagma<Multiplicative>,
[src]
T: AbstractMagma<Multiplicative>,
impl<T> MultiplicativeMonoid for T where
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
[src]
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
impl<T> MultiplicativeQuasigroup for T where
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
[src]
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
impl<T> MultiplicativeSemigroup for T where
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
[src]
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,