Struct nalgebra::geometry::Similarity [−][src]
A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
Fields
isometry: Isometry<N, D, R>
The part of this similarity that does not include the scaling factor.
Implementations
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn from_parts(
translation: Translation<N, D>,
rotation: R,
scaling: N
) -> Self
[src]
translation: Translation<N, D>,
rotation: R,
scaling: N
) -> Self
Creates a new similarity from its rotational and translational parts.
pub fn from_isometry(isometry: Isometry<N, D, R>, scaling: N) -> Self
[src]
Creates a new similarity from its rotational and translational parts.
pub fn from_scaling(scaling: N) -> Self
[src]
Creates a new similarity that applies only a scaling factor.
pub fn inverse(&self) -> Self
[src]
Inverts self
.
pub fn inverse_mut(&mut self)
[src]
Inverts self
in-place.
pub fn set_scaling(&mut self, scaling: N)
[src]
The scaling factor of this similarity transformation.
pub fn scaling(&self) -> N
[src]
The scaling factor of this similarity transformation.
pub fn prepend_scaling(&self, scaling: N) -> Self
[src]
The similarity transformation that applies a scaling factor scaling
before self
.
pub fn append_scaling(&self, scaling: N) -> Self
[src]
The similarity transformation that applies a scaling factor scaling
after self
.
pub fn prepend_scaling_mut(&mut self, scaling: N)
[src]
Sets self
to the similarity transformation that applies a scaling factor scaling
before self
.
pub fn append_scaling_mut(&mut self, scaling: N)
[src]
Sets self
to the similarity transformation that applies a scaling factor scaling
after self
.
pub fn append_translation_mut(&mut self, t: &Translation<N, D>)
[src]
Appends to self
the given translation in-place.
pub fn append_rotation_mut(&mut self, r: &R)
[src]
Appends to self
the given rotation in-place.
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)
[src]
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
[src]
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by this similarity.
This is the same as the multiplication self * pt
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 3.0); let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by this similarity, ignoring the translational component.
This is the same as the multiplication self * t
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 3.0); let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by the inverse of this similarity. This may be cheaper than inverting the similarity and then transforming the given point.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 2.0); let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Transform the given vector by the inverse of this similarity, ignoring the translational component. This may be cheaper than inverting the similarity and then transforming the given vector.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); let sim = Similarity3::new(translation, axisangle, 2.0); let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0)); assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this similarity into its equivalent homogeneous transformation matrix.
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn identity() -> Self
[src]
Creates a new identity similarity.
Example
let sim = Similarity2::identity(); let pt = Point2::new(1.0, 2.0); assert_eq!(sim * pt, pt); let sim = Similarity3::identity(); let pt = Point3::new(1.0, 2.0, 3.0); assert_eq!(sim * pt, pt);
impl<N: RealField, D: DimName, R> Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self
[src]
The similarity that applies the scaling factor scaling
, followed by the rotation r
with
its axis passing through the point p
.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let pt = Point2::new(3.0, 2.0); let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0); assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U2, Rotation2<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self
[src]
Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
Example
let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U2, UnitComplex<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self
[src]
Creates a new similarity from a translation and a rotation angle.
Example
let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U3, Rotation3<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self
[src]
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
pub fn new_observer_frames(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
pub fn look_at_rh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
pub fn look_at_lh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
impl<N: RealField> Similarity<N, U3, UnitQuaternion<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self
[src]
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; let translation = Vector3::new(1.0, 2.0, 3.0); // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::new(translation, axisangle, 3.0); assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
pub fn face_towards(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0); assert_eq!(sim * Point3::origin(), eye); assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
pub fn new_observer_frames(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
pub fn look_at_rh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0); assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
pub fn look_at_lh(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>,
scaling: N
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0); let target = Point3::new(2.0, 2.0, 3.0); let up = Vector3::y(); // Similarity with its rotation part represented as a UnitQuaternion let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0); assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
Trait Implementations
impl<N: RealField, D: DimName, R> AbsDiffEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
pub fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<N: RealField, D: DimName, R> AbstractGroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractLoop<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> AbstractMonoid<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractQuasigroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AbstractSemigroup<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
pub fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
pub fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type NonUniformScaling = N
Type of the non-uniform scaling to be applied.
type Rotation = R
Type of the first rotation to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Translation<N, D>, R, N, R)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn clone(&self) -> Self
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
impl<N: Debug + RealField, D: Debug + DimName, R: Debug> Debug for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N, D: DimName, R> Display for Similarity<N, D, R> where
N: RealField + Display,
R: Rotation<Point<N, D>> + Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
[src]
N: RealField + Display,
R: Rotation<Point<N, D>> + Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Div<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Div<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b R)
[src]
impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> DivAssign<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: R)
[src]
impl<N: RealField, D: DimName, R> DivAssign<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> Eq for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> From<Similarity<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn from(sim: Similarity<N, D, R>) -> Self
[src]
impl<N: RealField + Hash, D: DimName + Hash, R: Hash> Hash for Similarity<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Similarity<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<R> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N: RealField> Mul<Similarity<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Similarity<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Similarity<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, U2, UnitComplex<N>>) -> Self::Output
[src]
impl<N: RealField> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Similarity<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Similarity<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Similarity<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b R)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Similarity<N, D, R>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<R> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: R)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Similarity<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Similarity<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Similarity<N, D, R>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> One for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn one() -> Self
[src]
Creates a new identity similarity.
pub fn set_one(&mut self)
[src]
pub fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
impl<N: RealField, D: DimName, R> PartialEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> RelativeEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
pub fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = N
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
fn rotation(&self) -> R
[src]
fn scaling(&self) -> N
[src]
pub fn translate_point(&self, pt: &E) -> E
[src]
pub fn rotate_point(&self, pt: &E) -> E
[src]
pub fn scale_point(&self, pt: &E) -> E
[src]
pub fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn inverse_translate_point(&self, pt: &E) -> E
[src]
pub fn inverse_rotate_point(&self, pt: &E) -> E
[src]
pub fn inverse_scale_point(&self, pt: &E) -> E
[src]
pub fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
pub fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<N1, N2, D, R> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Similarity<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Similarity<N1, D, R1> where
N1: RealField + SubsetOf<N2>,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField + SubsetOf<N2>,
N2: RealField + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Similarity<N2, U2, R>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Similarity<N2, U2, R>
[src]
fn is_in_subset(sim: &Similarity<N2, U2, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U2, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, R> SubsetOf<Similarity<N2, U3, R>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<Self>,
fn to_superset(&self) -> Similarity<N2, U3, R>
[src]
fn is_in_subset(sim: &Similarity<N2, U3, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, U3, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>
[src]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn two_sided_inverse(&self) -> Self
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl<N: RealField, D: DimName, R> UlpsEq<Similarity<N, D, R>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
Auto Trait Implementations
impl<N, D, R> !RefUnwindSafe for Similarity<N, D, R>
impl<N, D, R> !Send for Similarity<N, D, R>
impl<N, D, R> !Sync for Similarity<N, D, R>
impl<N, D, R> !Unpin for Similarity<N, D, R>
impl<N, D, R> !UnwindSafe for Similarity<N, D, R>
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> MultiplicativeGroup for T where
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
[src]
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
impl<T> MultiplicativeLoop for T where
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
[src]
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
impl<T> MultiplicativeMagma for T where
T: AbstractMagma<Multiplicative>,
[src]
T: AbstractMagma<Multiplicative>,
impl<T> MultiplicativeMonoid for T where
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
[src]
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
impl<T> MultiplicativeQuasigroup for T where
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
[src]
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
impl<T> MultiplicativeSemigroup for T where
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
[src]
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub unsafe fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,